R Dataset / Package DAAG / bomsoi
Attachment  Size 

dataset65930.csv  12.63 KB 
Documentation 

On this Picostat.com statistics page, you will find information about the bomsoi data set which pertains to Southern Oscillation Index Data. The bomsoi data set is found in the DAAG R package. You can load the bomsoi data set in R by issuing the following command at the console data("bomsoi"). This will load the data into a variable called bomsoi. If R says the bomsoi data set is not found, you can try installing the package by issuing this command install.packages("DAAG") and then attempt to reload the data. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the bomsoi R data set. The size of this file is about 12,928 bytes. Southern Oscillation Index DataDescriptionThe Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Annual SOI and Australian rainfall data, for the years 19002001, are given. Australia's annual mean rainfall is an areaweighted average of the total annual precipitation at approximately 370 rainfall stations around the country. Usagebomsoi FormatThis data frame contains the following columns:
SourceAustralian Bureau of Meteorology web pages: http://www.bom.gov.au/climate/change/rain02.txt and http://www.bom.gov.au/climate/current/soihtm1.shtml ReferencesNicholls, N., Lavery, B., Frederiksen, C.\ and Drosdowsky, W. 1996. Recent apparent changes in relationships between the El Nino – southern oscillation and Australian rainfall and temperature. Geophysical Research Letters 23: 33573360. Examplesplot(ts(bomsoi[, 15:14], start=1900), panel=function(y,...)panel.smooth(1900:2005, y,...)) pause()# Check for skewness by comparing the normal probability plots for # different a, e.g. par(mfrow = c(2,3)) for (a in c(50, 100, 150, 200, 250, 300)) qqnorm(log(bomsoi[, "avrain"]  a)) # a = 250 leads to a nearly linear plotpause()par(mfrow = c(1,1)) plot(bomsoi$SOI, log(bomsoi$avrain  250), xlab = "SOI", ylab = "log(avrain = 250)") lines(lowess(bomsoi$SOI)$y, lowess(log(bomsoi$avrain  250))$y, lwd=2) # NB: separate lowess fits against time lines(lowess(bomsoi$SOI, log(bomsoi$avrain  250))) pause()xbomsoi < with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrain^0.33)) xbomsoi$trendSOI < lowess(xbomsoi$SOI)$y xbomsoi$trendRain < lowess(xbomsoi$cuberootRain)$y rainpos < pretty(bomsoi$avrain, 5) with(xbomsoi, {plot(cuberootRain ~ SOI, xlab = "SOI", ylab = "Rainfall (cube root scale)", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) ## Relative changes in the two trend curves lines(lowess(cuberootRain ~ SOI)) lines(lowess(trendRain ~ trendSOI), lwd=2) }) pause()xbomsoi$detrendRain < with(xbomsoi, cuberootRain  trendRain + mean(trendRain)) xbomsoi$detrendSOI < with(xbomsoi, SOI  trendSOI + mean(trendSOI)) oldpar < par(mfrow=c(1,2), pty="s") plot(cuberootRain ~ SOI, data = xbomsoi, ylab = "Rainfall (cube root scale)", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) with(xbomsoi, lines(lowess(cuberootRain ~ SOI))) plot(detrendRain ~ detrendSOI, data = xbomsoi, xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n") axis(2, at = rainpos^0.33, labels=paste(rainpos)) with(xbomsoi, lines(lowess(detrendRain ~ detrendSOI))) pause()par(oldpar) attach(xbomsoi) xbomsoi.ma0 < arima(detrendRain, xreg=detrendSOI, order=c(0,0,0)) # ordinary regression modelxbomsoi.ma12 < arima(detrendRain, xreg=detrendSOI, order=c(0,0,12)) # regression with MA(12) errors  all 12 MA parameters are estimated xbomsoi.ma12 pause()xbomsoi.ma12s < arima(detrendRain, xreg=detrendSOI, seasonal=list(order=c(0,0,1), period=12)) # regression with seasonal MA(1) (lag 12) errors  only 1 MA parameter # is estimated xbomsoi.ma12s pause()xbomsoi.maSel < arima(x = detrendRain, order = c(0, 0, 12), xreg = detrendSOI, fixed = c(0, 0, 0, NA, rep(0, 4), NA, 0, NA, NA, NA, NA), transform.pars=FALSE) # error term is MA(12) with fixed 0's at lags 1, 2, 3, 5, 6, 7, 8, 10 # NA's are used to designate coefficients that still need to be estimated # transform.pars is set to FALSE, so that MA coefficients are not # transformed (see help(arima))detach(xbomsoi) pause()Box.test(resid(lm(detrendRain ~ detrendSOI, data = xbomsoi)), type="LjungBox", lag=20)pause()attach(xbomsoi) xbomsoi2.maSel < arima(x = detrendRain, order = c(0, 0, 12), xreg = poly(detrendSOI,2), fixed = c(0, 0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)), transform.pars=FALSE) xbomsoi2.maSel qqnorm(resid(xbomsoi.maSel, type="normalized")) detach(xbomsoi)  Dataset imported from https://www.rproject.org. 
Picostat Manual 

How To Register With a Username
How To Register With Google Single Sign On (SSO)
How To Login With a Username and Password
How To Login With Google Single Sign On (SSO)
How To Import a Dataset
How To Perform Statistical Analysis with Picostat
How To Use Educational Applications with Picostat

Recent Queries For This Dataset 

No queries made on this dataset yet. 
Title  Authored on  Content type 

US Baby Names in 2015  March 25, 2017  6:31 PM  Dataset 
R Dataset / Package DAAG / allbacks  March 9, 2018  1:06 PM  Dataset 
R Dataset / Package DAAG / geophones  March 9, 2018  1:06 PM  Dataset 
R Dataset / Package Ecdat / Bids  March 9, 2018  1:06 PM  Dataset 
R Dataset / Package car / Womenlf  March 9, 2018  1:06 PM  Dataset 